Ready, Set, Go!

Ready

Topic: Standard form of a quadratic equation

© 2013 www.flickr.com/photos/nuage_de_lait/

 $y = ax^2 + bx + c$, $(a \ne 0)$.

The standard form of a quadratic equation is defined as Identify a, b, and c in the following equations.

Example: Given $4x^2 + 7x - 6$, a = 4, b = 7, and c = -6

1.
$$v = 5x^2 + 3x + 6$$

2.
$$y = x^2 - 7x + 3$$

3.
$$y = -2x^2 + 3x$$

4.
$$y = 6x^2 - 5$$

5.
$$y = -3x^2 + 4x$$

6.
$$y = 8x^2 - 5x - 2$$

Multiply and write each product in the form $y = ax^2 + bx + c$. Then identify a, b, and c.

7.
$$y = x(x - 4)$$

8.
$$y = (x - 1)(2x - 1)$$

9.
$$y = (3x - 2)(3x + 2)$$

10.
$$y = (x + 6)(x + 6)$$

11.
$$y = (x - 3)^2$$

12.
$$y = -(x+5)^2$$

Ready, Set, Go!

Ready

Topic: Recognizing quadratic equations.

Identify whether or not each equation represents a quadratic function. Explain how you knew it was a quadratic.

Quadratic or no?

2.
$$3x^2 + x = 3x^2 - 2$$

Quadratic or no?

Justification: Justification:

4.
$$(2x - 7) + 6x = 10$$

5.
$$2^x + 6 = 0$$

Quadratic or no? Quadratic or no?

Justification: Justification:

3.
$$x(4x - 5) = 0$$

Quadratic or no?

Justification:

6.
$$32 = 4x^2$$

Quadratic or no?

Justification:

Set

Topic: Changing from standard form of a quadratic to vertex form

Change the form of each equation to vertex form: $y = a(x - h)^2 + k$. State the vertex and graph the parabola. Show at least 3 accurate points on each side of the line of symmetry.

7.
$$y = x^2 - 4x + 1$$

8.
$$y = x^2 + 2x + 5$$

vertex:

vertex:

